EN FR
EN FR


Section: Partnerships and Cooperations

European Initiatives

FP7 & H2020 Projects

QCALL
  • Title: Quantum Communications for ALL

  • Programm: H2020-MSCA-ITN-2015

  • Duration: December 2016 - November 2020

  • Coordinator: University of Leeds (UK)

  • Other partners: see http://www.qcall-itn.eu/

  • Inria contact: Anthony Leverrier

  • QCALL is a European Innovative Training Network that endeavors to take the next necessary steps to bring the developing quantum technologies closer to the doorsteps of end users. QCALL will empower a nucleus of 15 doctoral researchers in this area to provide secure communications in the European continent and, in the long run, to its connections worldwide.

ERC QUASYModo
  • Title: QUASYModo Symmetric Cryptography in the Post-Quantum World

  • Program: ERC starting grant

  • Duration: September 2017 - August 2022

  • PI: María Naya Plasencia

  • As years go by, the existence of quantum computers becomes more tangible and the scientific community is already anticipating the enormous consequences of the induced breakthrough in computational power. Cryptology is one of the affected disciplines. Indeed, the current state-of-the-art asymmetric cryptography would become insecure, and we are actively searching for alternatives. Symmetric cryptography, essential for enabling secure communications, seems much less affected at first sight: its biggest known threat is Grover’s algorithm, which allows exhaustive key searches in the square root of the normal complexity. Thus, so far, it is believed that doubling key lengths suffices to maintain an equivalent security in the post- quantum world. The security of symmetric cryptography is completely based on cryptanalysis: we only gain confidence in the security of a symmetric primitive through extensive and continuous scrutiny. It is therefore not possible to determine whether a symmetric primitive might be secure or not in a post-quantum world without first understanding how a quantum adversary could attack it. Correctly evaluating the security of symmetric primitives in the post-quantum world cannot be done without a corresponding cryptanalysis toolbox, which neither exists nor has ever been studied. This is the big gap I have identified and that I plan to fill with this project. Next, doubling the key length is not a trivial task and needs to be carefully studied. My ultimate aim is to propose efficient solutions secure in the post-quantum world with the help of our previously obtained quantum symmetric cryptanalysis toolbox. This will help prevent the chaos that big quantum computers would generate: being ready in advance will definitely save a great amount of time and money, while protecting our current and future communications. The main challenge of QUASYModo is to redesign symmetric cryptography for the post-quantum world.

H2020 FET Flagship on Quantum Technologies - CiViQ
  • Title: CiViQ Continuous Variable Quantum Communications

  • Program: H2020 FET Flagship on Quantum Technologies

  • Duration: October 2018 - September 2021

  • PI: Anthony Leverrier

  • The goal of the CiViQ project is to open a radically novel avenue towards flexible and cost-effective integration of quantum communication technologies, and in particular Continuous-Variable QKD, into emerging optical telecom- munication networks. CiViQ aims at a broad technological impact based on a systematic analysis of telecom-defined user-requirements. To this end CiViQ unites for the first time a broad interdisciplinary community of 21 partners with unique breadth of experience, involving major telecoms, integrators and developers of QKD. The work targets advancing both the QKD technology itself and the emerging “software network” approach to lay the foundations of future seamless integration of both. CiViQ will culminate in a validation in true telecom network environment. Project-specific network integration and software development work will empower QKD to be used as a physical-layer-anchor securing critical infrastruc- tures, with demonstration in QKD-extended software-defined networks.

Collaborations in European Programs, Except FP7 & H2020

QCDA
  • Program: QuantERA ERA-NET Cofund in Quantum Technologies

  • Project acronym: QCDA

  • Project title: Quantum Code Design and Architecture

  • Duration: February 2018 - January 2021

  • Coordinator: Earl Campbell, University of Sheffield, UK

  • Other partners: University of Sheffield (UK), TU Delft (Netherlands), TU Munich (Germany), University College London (UK)

  • Inria contact: Anthony Leverrier

  • General purpose quantum computers must follow a fault-tolerant design to prevent ubiquitous decoherence processes from corrupting computations. All approaches to fault-tolerance demand extra physical hardware to perform a quantum computation. Kitaev's surface, or toric, code is a popular idea that has captured the hearts and minds of many hardware developers, and has given many people hope that fault-tolerant quantum computation is a realistic prospect. Major industrial hardware developers include Google, IBM, and Intel. They are all currently working toward a fault-tolerant architecture based on the surface code. Unfortunately, however, detailed resource analysis points towards substantial hardware requirements using this approach, possibly millions of qubits for commercial applications. Therefore, improvements to fault-tolerant designs are a pressing near-future issue. This is particularly crucial since sufficient time is required for hardware developers to react and adjust course accordingly.

    This consortium will initiate a European co-ordinated approach to designing a new generation of codes and protocols for fault-tolerant quantum computation. The ultimate goal is the development of high-performance architectures for quantum computers that offer significant reductions in hardware requirements; hence accelerating the transition of quantum computing from academia to industry. Key directions developed to achieve these improvements include: the economies of scale offered by large blocks of logical qubits in high-rate codes; and the exploitation of continuous-variable degrees of freedom.

    The project further aims to build a European community addressing these architectural issues, so that a productive feedback cycle between theory and experiment can continue beyond the lifetime of the project itself. Practical protocols and recipes resulting from this project are anticipated to become part of the standard arsenal for building scalable quantum information processors.